Question: -

In a $\triangle PQR$, let $\angle PQR = 30^{\circ}$ and the sides PQ and QRhave lengths $10\sqrt{3}$ and 10, respectively. Then, which of the following statement(s) is (are) TRUE? (2018 Adv)

- (a) $\angle QPR = 45^{\circ}$
- (b) The area of the $\triangle PQR$ is $25\sqrt{3}$ and $\angle QRP = 120^{\circ}$
- (c) The radius of the incircle of the $\triangle PQR$ is $10\sqrt{3} 15$
- (d) The area of the circumcircle of the $\triangle PQR$ is 100 π

Solution: -

We have, In APQR

$$\angle PQR = 30^{\circ}$$

$$PQ = 10\sqrt{3}$$

$$QR = 10$$

By cosine rule

osine rule
$$\cos 30^{\circ} = \frac{PQ^{2} + QR^{2} - PR^{2}}{2PQ \cdot QR}$$

$$\frac{\sqrt{3}}{2} = \frac{300 + 100 - PR^{2}}{200\sqrt{3}}$$

$$\Rightarrow$$
 300 = 300 + 100 - PR²

$$\Rightarrow$$
 PR = 10

Since, PR = QR = 10

$$\angle QPR = 30^{\circ} \text{ and } \angle QRP = 120^{\circ}$$

Area of $\triangle PQR = \frac{1}{2}PQ \cdot QR \cdot \sin 30^{\circ}$
$$= \frac{1}{2} \times 10\sqrt{3} \times 10 \times \frac{1}{2} = 25\sqrt{3}$$

Radius of incircle of

i.e.
$$\Delta PQR = \frac{\text{Area of } \Delta PQR}{\text{Semi - perimetre of } \Delta PQR}$$

$$r = \frac{\Delta}{s} = \frac{25\sqrt{3}}{\frac{10\sqrt{3} + 10 + 10}{2}} = \frac{25\sqrt{3}}{5(\sqrt{3} + 2)}$$

$$\Rightarrow \qquad r = 5\sqrt{3}(2 - \sqrt{3})$$

$$= 10\sqrt{3} - 15$$

and radius of circumcircle (R) =
$$\frac{abc}{4\Delta} = \frac{10\sqrt{3} \times 10 \times 10}{4 \times 25\sqrt{3}} = 10$$

:. Area of circumcircle of

$$\Delta PQR = \pi R^2 = 100 \pi$$

Hence, option (b), (c) and (d) are correct answer.